

Controlling forces in trauma indications: How to get the best of the technique

SENSE

2nd International Spine Expert Symposium

Dr. Patrick A. Weidle

June 23 – 25, 2022 / Valencia – Spain

Principle of Fracture Treatment:

SENSE Spine Expert Network for Science & Education

 \sim

0

0

 \sim

0

0

0

0

0

 \sim

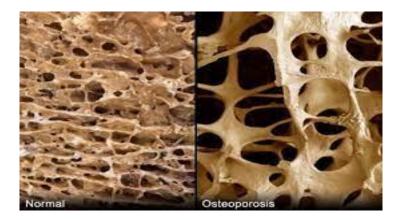
A) Reposition

B) Stabilisation

C) Holding of the Stabilisation

SENSE

2nd International Spine Expert Symposium



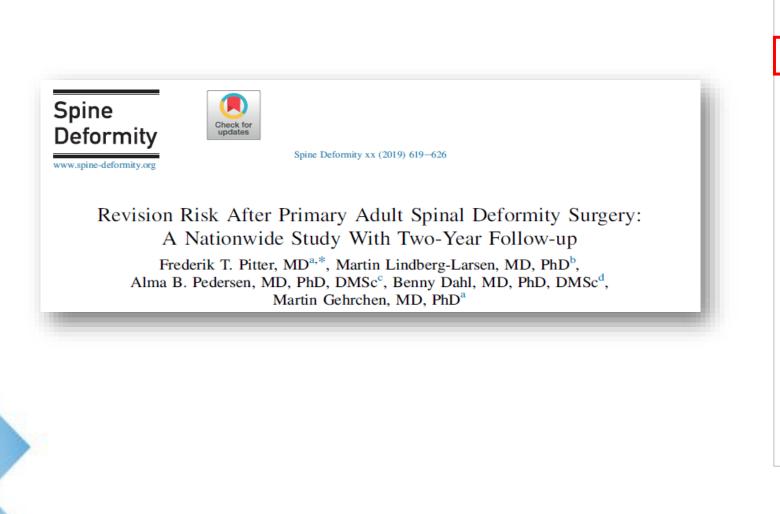
 \sim

Energy vs. Bone Quality

Germany: 80% of the VBF are patients with poor bone quality!

2nd International Spine Expert Symposium

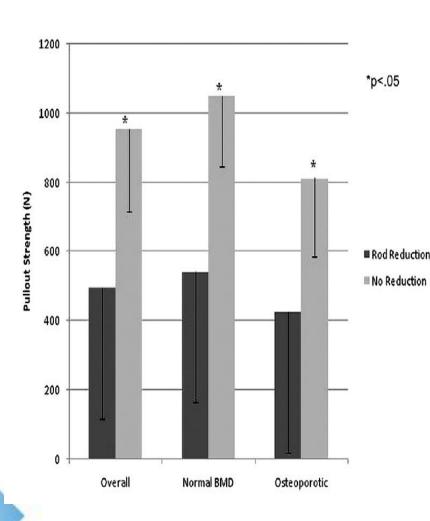
Positioning of the Patient = Repositioning of the Fracture via Ligamentotaxis


SENSE 2nd International Spine Expert Symposium

. . . .

Spine Expert Symposium

Reasons for Revision Surgery – Implant Failure


Reasons for revision	in the 110 patients.	
Reasons	n (%) (95% CI)	
Implant failure	42 (38.2)	
Infection	13 (11.8)	1
Curve progression	12 (10.9)	
Pseudarthrosis	12 (10.9)	
Neurologic deficit	12 (10.9)	
Other	9 (8.2)	
РЈК	8 (7.3)	
Unknown	2 (1.8)	

Neo

CONFIDENTAL AND FOR INTERNAL USE ONLY – DO NOT COPY OR DISTRIBUTE

Clinical Outcomes – Screw Loosening

 ELSEVIER
 The Spine Journal 13 (2013) 1617-1626

 Basic Science

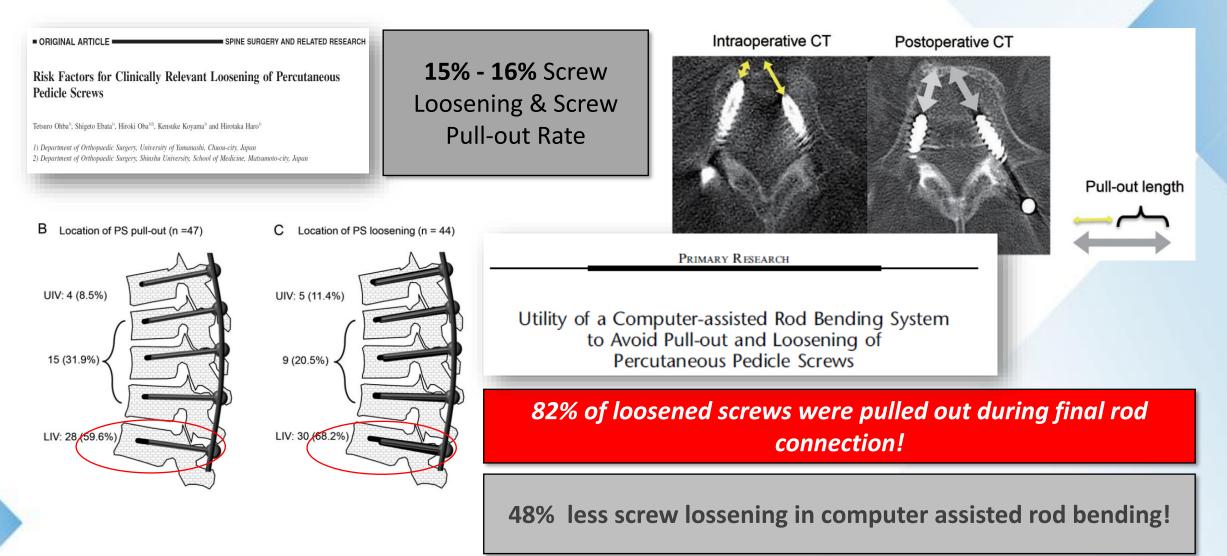
 The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?

 Haines Paik, MD, Daniel G. Kang, MD, Ronald A. Lehman, Jr., MD*, Rachel E. Gaume, BS, Divya V. Ambati, BS, Anton E. Dmitriev, PhD, MSc

 Department of Orthopaedic Surgery and Rehabbilitation, Waker Reed National Military Medical Center, 8901 Wacconsin Ave., Bethesda, MD 20888, USA Received 26 June 2011; revised 27 May 2012; accepted 4 May 2013

48% reduced bone anchorage/biomechanical fixation strenghth after attempted reduction using a persuasion device

5-mm-reduction is enough to cause screw loosening


1. Kang DG, et al. Effects of rod redu

Try to avoid reduction using a persuasion device (osteoporosis)!

CONFIDENTAL AND FOR INTERNAL USE ONLY - DO NOT COPY OR DISTRIBUTE

TΜ

Clinical Outcome – Screw Loosening

Nea

Forced Fixation ? – A problem of design?

Heavy Instruments with a high physical center (bad lever!)

Weight: ~0.8 kg - 1.5 kg. reduce the tactile feeling

Bad Lever:

~70% topheavy ~ 35% longer ~40x more mechanical stress Instruments block polyaxiality

Position of the screw head: Prohibit the perpendicular alignment Screw - Rod

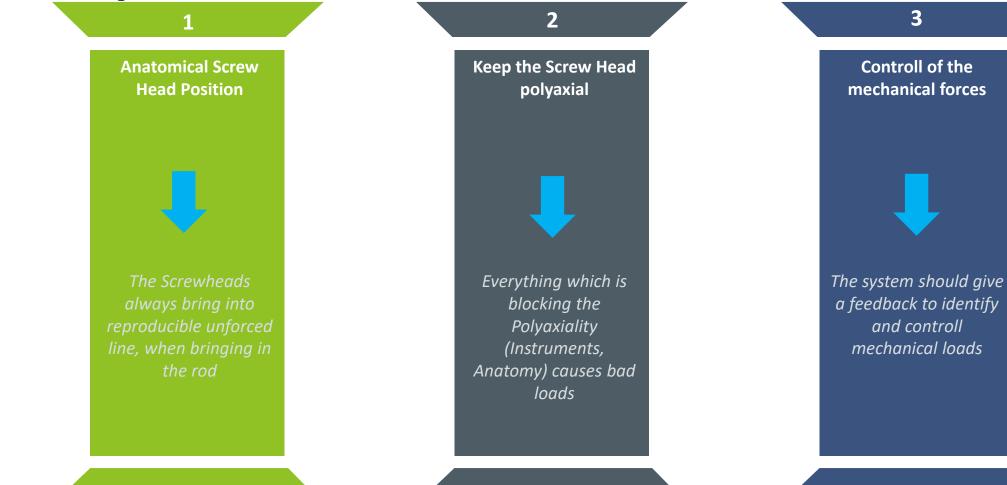
Reduction power: pulls the spine to the rod – bad anatomical load!

Flat Set Screws

Neo

Flat Design: Limited perpendicular alignment – last ½ turn!

Friction: Cold welding – Failure of the stabilisation

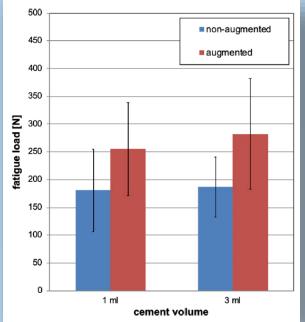


Principles of Controlled Fixation

Implantation of the Screw

CONTROLLED FIXATION DESIGN

- K-Wire and lighth screwdriver for navigation of the screw
- Short lever
- No need of drilling a thread



Cement Augmentation

Fig. 1 Radiographs (transversal) showing vertebral body after instrumentation and cement augmentation of one side with 1 ml (a) or 3 ml (b)

SENSE 2nd International Spine Expert Symposium

Compared to the non-augmented screws, augmentation with:

- 1 ml bone cement increased the fatigue load by 41%
- 3 ml increased the fatigue load by 51%

There was no significant difference in fatigue loads between the specimens with screws augmented with 1 ml and screws augmented with 3 ml of bone cement (p = 0.504).

"A spare usage of bone cement (around 1 ml) for each pedicle screw appears to be recommendable"

Cement Augmentation

 Systematic Literature Review

CONCLUSION PMMA along with several calcium ceramic materials, are effective materials for enhancing pedicle screw fixation.

SENSE

Table 2

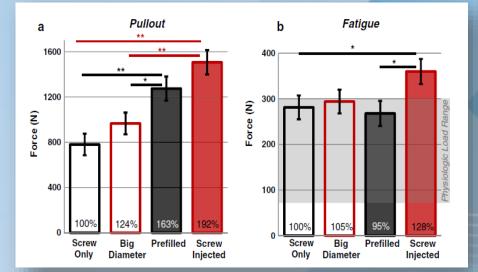
Biomechanical testing of PMMA screw augmentation with fenestrated or cannulated screws

						Screw			_	
Study	Subject	Levels		Screw and cement implantation	Volume (cc)	insertion time (min)	Biomechanics	Results	ailure mode	Comments
ecker et al. [12]	Cadaveric spines	L1–L4	PMMA	Solid, fenestrated, vertebroplasty vs. kyphoplasty	2	6	Axial pullout	1.5- to 1.8-Fold increase in pullout strength with cement, no difference between fenestrated screw, vertebroplasty, or kyphoplasty	crew stripping for fenestrated screw, bone-cement interface for solid screws	Epidural cement leakage with fenestrated screw
'hao et al. [13]	Osteoporotic cadaveric spines	T10– L5	РММА	Fenestrated (prefilled or through screw)	2	0	Axial pullout, stiffness, energy to failure	4- to 5.6-fold increase in pullout strength with cement, prefilling hole with higher failure energy than injecting through fenestration	one-cement interface	Injecting through fenestrated screw with cement only at distal end of screw where fenestration located
oost et al. [14]	Normal vs. osteoporotic cadaveric v ertebrae	T12- L5	РММА	Fenestrated, with or without cement	3	NR	Axial pullout	2.1-fold increase in pullout strength for osteoporotic group, 1.5-fold increase in normal group	γR	No cement extravasation
then et al. [15]	Synthetic bone blocks simulating severe osteoporosis	NA	РММА	Solid vs. fenestrated, conical vs. cylindrical	3	1	Axial pullout	Prefilling cement had improved pullout strength compared with fenestrated screw injection	one-cement interface	Enhanced initial fixation, no loss of fixation strength when backing screws out 360°
Chen et al. [16]	Synthetic bone	NA	PMMA	Fenestrated screw, with or without radial holes	3	1	Axial pullout	Pullout strength increased with greater number of radial screw holes	one-cement interface	Cement exuded primarily from proximal holes
Waits et al. [17]	Osteopenic cadaveric vertebrae	L1–L5	РММА	Fenestrated, left in place or replaced before curing	2.5	0	Cephalocaudal toggle displacement, removal torqu	63% motion reduction for cemented screws	γR	Removal torque 10-fold higher if fenestrated screw left in place after cement injection
Cueny et al. [18]	Osteoporotic cadaveric vertebrae	L1–L5	РММА	Fenestrated, prefilled, screw-injected, large diameter nonaugmented	NR	NR	Toggle fatigue testing, axial pullout	Both cement augmentation techniques increased pullout force, but better fatigue resistance in screw-injected group	√R	Cement leakage in 6 of 9 vertebrae
Choma et al. [19]	Osteoporotic cadaveric vertebrae	T6-L5	PMMA	Nonaugmented, solid with PMMA, partially fenestrated, fully fenestrated	2	NR	Axial pullout, removal torqu	All augmentation techniques significantly better pullout strength than control; partial fenestration had better pullout strength than solid screw with cement prefilling	crew-cement interface during removal	No difference in pullout strength between high- and low-viscosity cement, no difference in extraction torque for solid screws or fenestrated screws, no vertebral body damage with removal

NA, not applicable; NR, not recorded; PMMA, polymethylmethacrylate.

Cement Augmentation

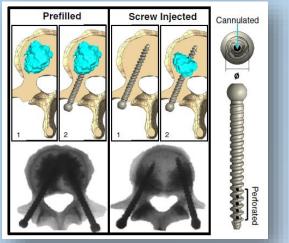
Eur Spine J (2014) 23:2196-2202 DOI 10.1007/s00586-014-3476-7


ORIGINAL ARTICLE

Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing

Rebecca A. Kueny · Jan P. Kolb · Wolfgang Lehmann Klaus Püschel · Michael M. Morlock · Gerd Huber

Biomechanical study in human osteoporotic cadaveric spine


- 4 treatment groups:
 - screw only (control)
 - non-augmented, increased diameter
 - prefilled Ο
 - augmentation
 - screw injected \bigcirc augmentation

- 39 lumbar vertebrae
- To determine the fixation strength of current fixation techniques

2nd International SENSE

Spine Expert Symposium

- Screw injected augmentation showed the best biomechanical stability.
- Key for achieving stable screw fixation in the osteoporotic spine:

Utilizing screw injected cement augmentation along with a maximal screw diameter.

REVIEW ARTICLE

Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with <u>intermediate screws</u> at the fracture level—a systematic review and meta-analysis

Carolijn Kapoen¹ · Yang Liu² · Frank W. Bloemers¹ · Jaap Deunk¹

Systematic review: 21 randomized controlled trials with a total of 1890 patients

2nd International Spine Expert Symposium

REVIEW ARTICLE

Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with <u>intermediate screws</u> at the fracture level—a systematic review and meta-analysis

Carolijn Kapoen¹ · Yang Liu² · Frank W. Bloemers¹ · Jaap Deunk¹

Systematic review: 21 randomized controlled trials with a total of 1890 patients

Significantly - lower pain scores

- better short- and long-term Cobb angles
- less loss of correction
- less implant failures

SENSE 2nd International Spine Expert Symposium

REVIEW ARTICLE

Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with <u>intermediate screws</u> at the fracture level—a systematic review and meta-analysis

Carolijn Kapoen¹ · Yang Liu² · Frank W. Bloemers¹ · Jaap Deunk¹

Systematic review: 21 randomized controlled trials with a total of 1890 patients

Significantly	 lower pain scores better short- and long-term Cobb angles less loss of correction less implant failures 	Significantly

SENSE ^{2nd Int} Spine E

2nd International Spine Expert Symposium - more blood loss

- longer operation time

17

Article Efficacy and Radiographic Analysis of Minimally Invasive Posterior Mono-Axial Pedicle Screw Fixation in Treating Thoracolumbar Burst Fractures

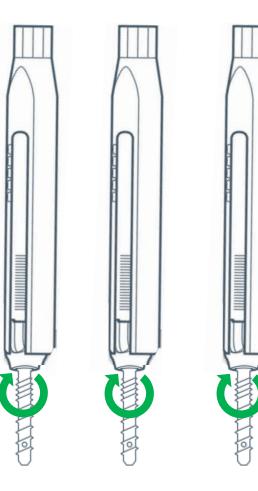
Jae-Hoon Shim and Eun-Min Seo *

Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; shim0121@hallym.or.kr

* Correspondence: seoem@hallym.or.kr; Tel.: +82-33-240-5198

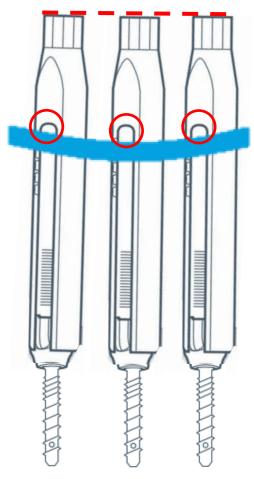
Randomized controlled trial with a total of 98 patients; mono-axial vs. poly-axial Traumatic fractures; healthy bone quality

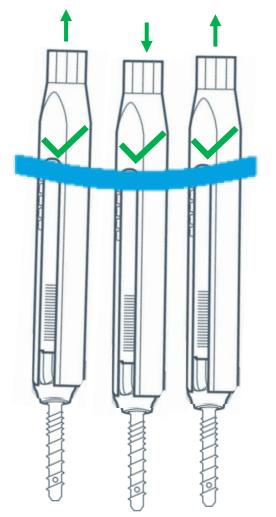
Mono-Axial PS-Fixation was significantly better in correction of regional angle of kyphosis and maintaining anterior vb height


MO-PS	Correction of path. Kyphosis: 62%	Loss of Correction after 12 Mo: 15%
PA-PSD	Correction of path. Kyphosis: 52%	Loss of Correction after 12 Mo: 33%

SENSE 2nd International Spine Expert Symposium \sim

 \sim


Polyaxiality of the screws



• GuideTower: Enables to ensure polyaxiality

Modification of the rod (or of the screws!?)

Misalignment screw - rod

Perfect Alignment screw – rod!

Controlled Fiaxtion!

CONTROLLED FIXATION DESIGN

- Inspection of the hight of the guide tower
- Inspection of length and bending of the rot at the domes of the guide

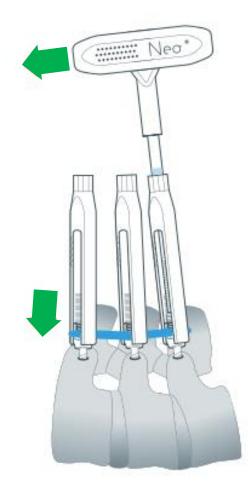
Consequence

- Visuell confirmation of an expected perfect fit of the rod to the screws (Avoidance of bad mech. Loads)
- Visuell controll of reduction at any time point

Pre-Fixation of the rod & Torque limiter

CONTROLLED FIXATION DESIGN

- Light removable rod holder
- Torque limiter to avoid rod migration

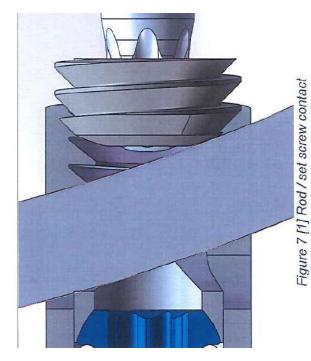

Consequence

- Preservation of mobility
- Reduction of tissue damage because of the early removing of the rod holder

Stressless positioning of the rod

CONTROLLED FIXATION DESIGN

- Rod reduction via polyaxiality of the screw heads
- Segmental removal of the guide towers



Effect: Controlled Fixation

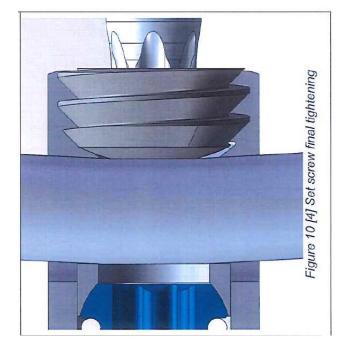
- No uncontrolled forces while bringing in the rod to the screw heads
- Full controll of the rod-position to achieve a specific correction

Locking the set screw

CONTROLLED FIXATION DESIGN

- Light guide tower
- Convex set screw
- Prominet StainlessSteel-Torx 'frictionless' locking

Effect: Controlled Fixation


- Mobility enables the perfectperpendicular adaption of the implants interface
- Reduced cold welding

•

• Reduced implant failure

Locking the set screw

CONTROLLED FIXATION DESIGN

- Light guide tower
- Convex set screw
- Prominet StainlessSteel-Torx 'frictionless' locking

Effect: Controlled Fixation

- Mobility enables the perfectperpendicular adaption of the implants interface
- Reduced cold welding

•

• Reduced implant failure

Locking the construct

!!! Attention – Think different !!!

REDUCTION/LOCKING:

- **PARALLEL**
- <u>SYMETRIC</u>
- <u>ALTERNATING</u>
- **<u>SEGMENTAL</u>** Removal of the Guide Towers

→ Effect: Controlled fixation

Avoidance of:

- Coronale Deformation
- Sagital Compression / Distraction
- Mal-Rotation

Thank you for your attention!

SENSE

2nd International Spine Expert Symposium p.weidle@kh-neuwerk.de

SENSE Spine Expert Network for Science & Education

0

0

 \sim

 \sim

0

 \sim

0

 \sim

 \sim

 \sim

0

0

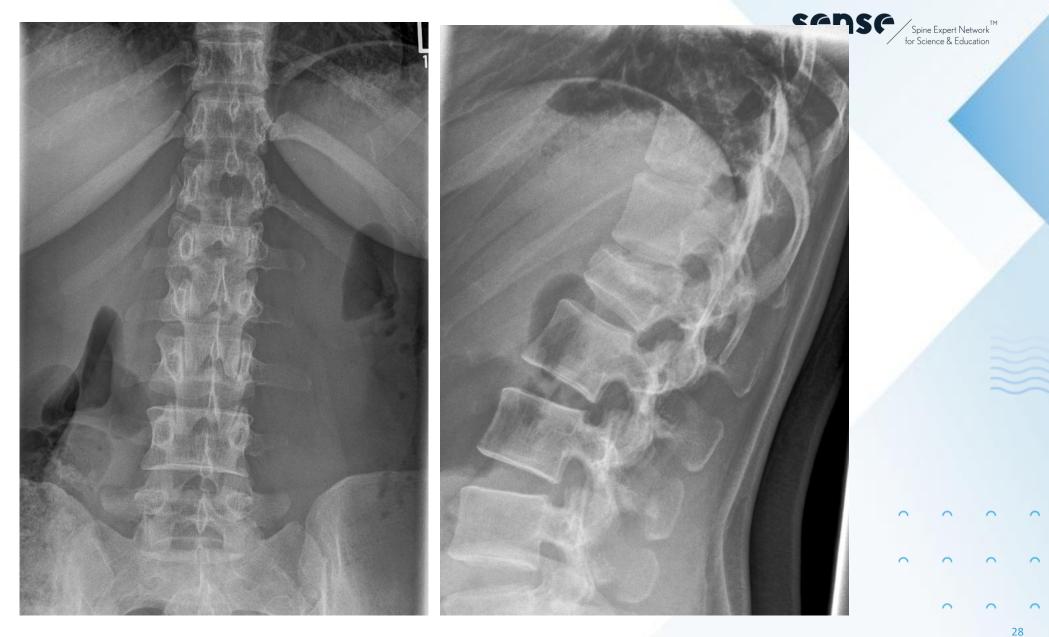
0

 \sim

26

CR I:

High-Energy-Traum, Healthy Bone Qual.


Male, 28 LY, no secondary diagnosis

Unstable L1-Burst-Fracture

2nd International Spine Expert Symposium

SENSE

2nd International Spine Expert Symposium

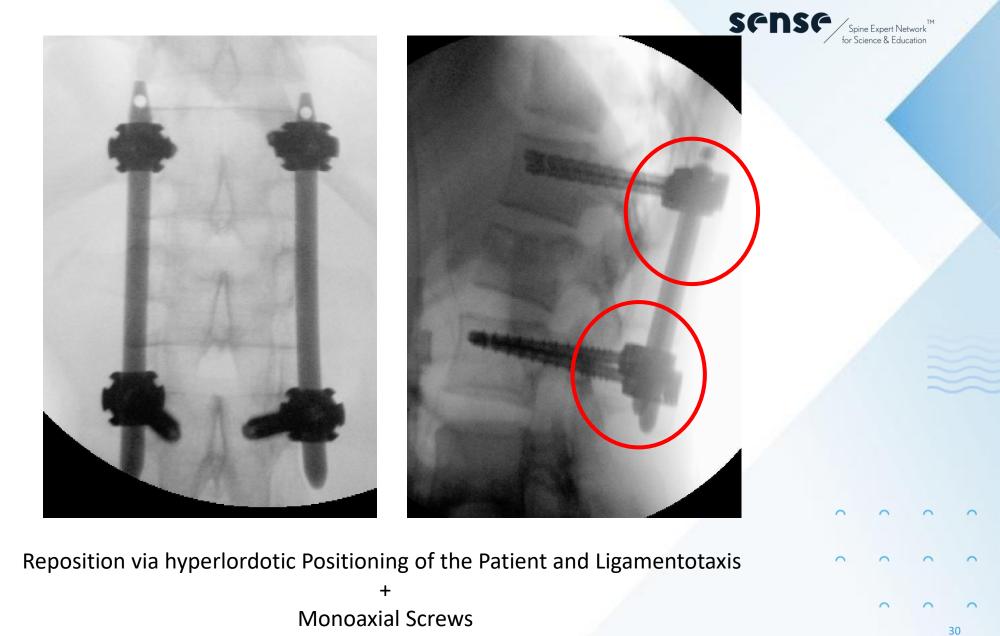
. . . .

 \sim

 \sim

0

 \sim



SENSE 2nd International Spine Expert Symposium

. . . .

 \sim

 \sim

2nd International Spine Expert Symposium

SENSE

High-Energy-Traum, Healthy Bone Qual.

Female, 41 LY, no secondary diagnosis

Unstable T12-Burst-Fracture with Disc-Tear-Drop and PF

2nd International Spine Expert Symposium

SENSE 2nd International Spine Expert Symposium

 \sim

 \sim

0

 \sim

SENSE

2nd International Spine Expert Symposium 0 \sim \sim 0 \sim 0 \sim 0 \sim \sim 0 33 \sim 0 \sim \sim

VB-Replacement???

SENSE

2nd International Spine Expert Symposium

0

 \sim

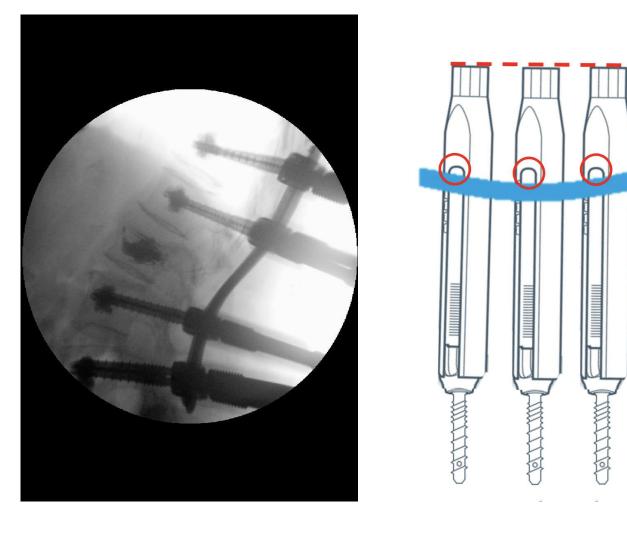
CAD T12 (SJ 5.0mm) with Replacement of the Disc-Material Temporary: MA-PS T11+L1, PA-PS T10+L2

SENSE

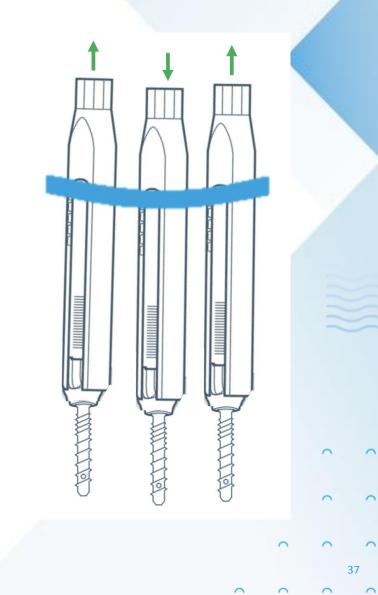
2nd International Spine Expert Symposium

It's all up to the « rod-bending »!!!

2nd International Spine Expert Symposium



sense

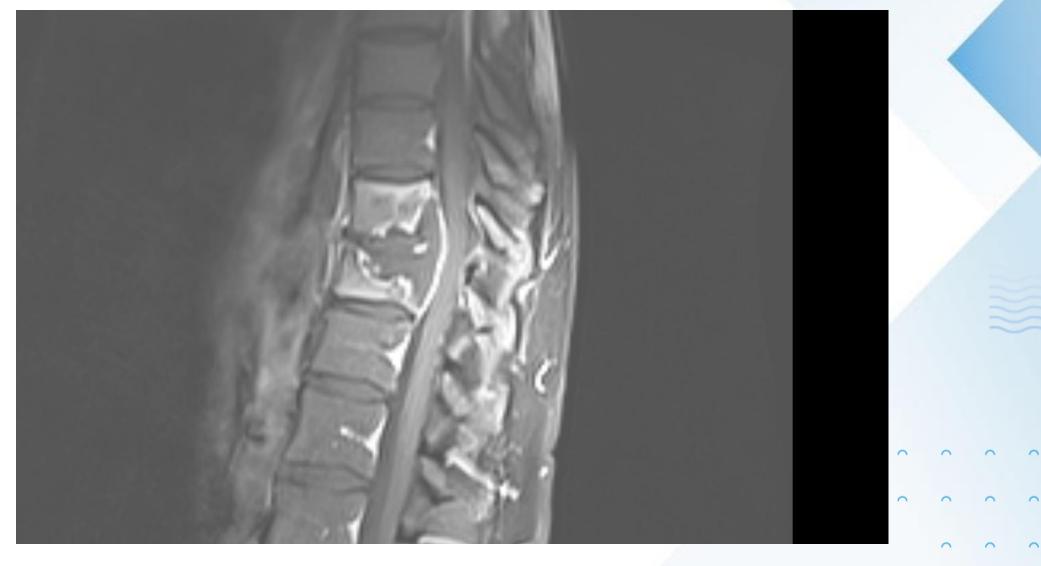

Spine Expert Network for Science & Education

. . . .

CR IV:

Spondylodiscitis T7/8 after difficult cystitis

Male, 52 LY, no other secondary diagnosis


SENSE 2nd Interr Spine Expo

2nd International Spine Expert Symposium

. . . .

2nd International Spine Expert Symposium 39

 \sim

0

 \sim

 \sim

0

0

0

 \sim

 \sim

0

 \sim

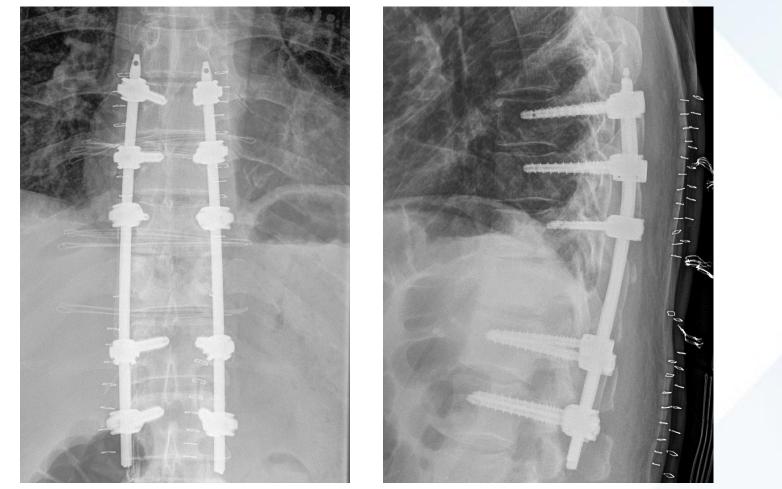
0

0

0

 \sim

40


Reposition?

But Stability!!!

SENSE

Perc. Instrumentation T5/6 – T7 (Index!) – T9/10

M-Hemilaminectomie T7/8 & Epidural Irrigation

2nd International Spine Expert Symposium

SENSE

42

CR V:

Low-Energy-Trauma, Poor Osteoporotic Bone Qual. (T -3,2)

Female, 77 LY, hpb, coronary heart disease, condition after extern T7-BKP

Unstable T8-Fracture (AO A4), PF T8 and DP-Fracture T8+9

SENSE ^{2r} sp

2nd International SENSE Spine Expert Symposium

0

 \sim

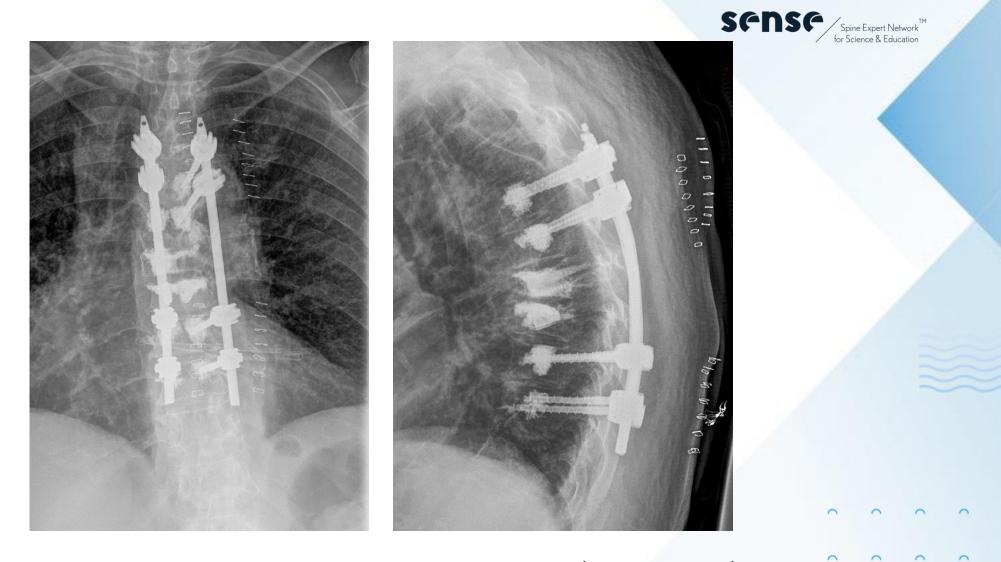
 \sim

 \sim

 \sim

0

 \sim


43

 \sim

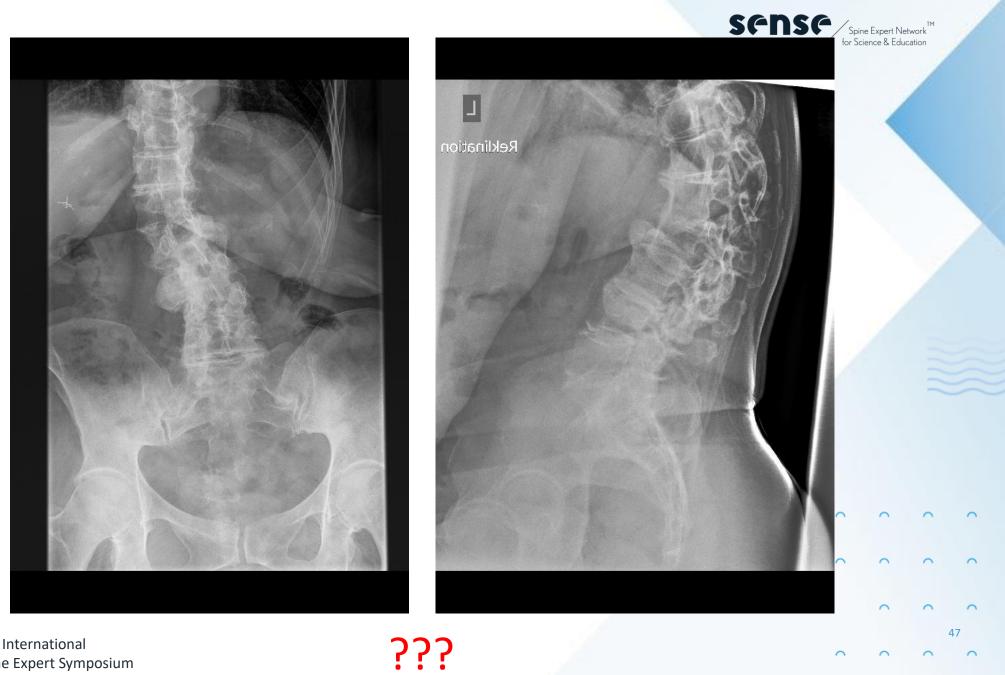
2nd International Spine Expert Symposium

 \sim

Hybrid-Tech.: CAD (SJ5.0mm) T8, Perc. Instrumentation T5 PA/6 MA – T9 MA/T10 PA Zementaugmentation of all PS, Kyphotic Rod Bending

46

 \sim

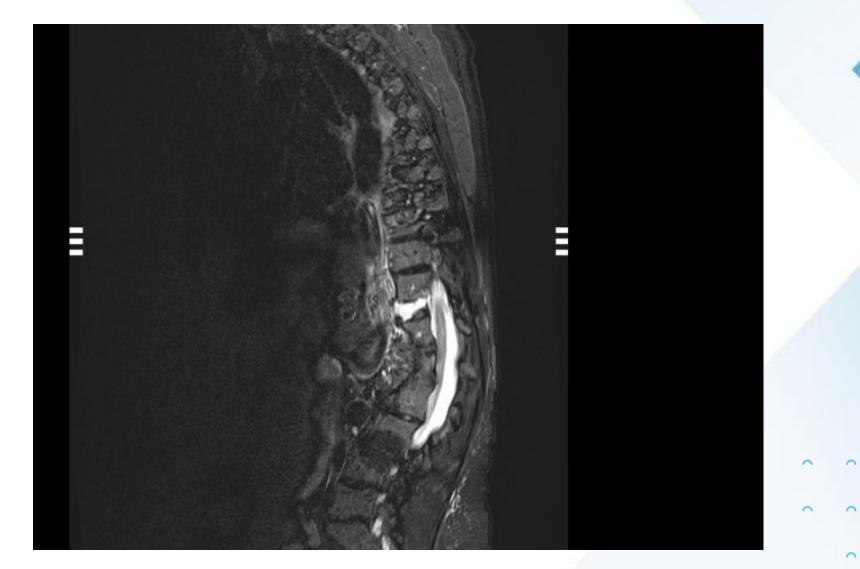

CR V: « THE JURASSIC SPINE »

Low-Energy-Trauma, M.Bechterew

Female, 82 LY, severe sec. diagnosis

Unstable Gape-Fracture T11/12

SENSE 2nd International Spine Expert Symposium


 \sim

 \sim

0

 \sim

2nd International Spine Expert Symposium

. . . .

 \sim

 \sim

 \sim

0

0

0

0

0

 \sim

Spine Expert Symposium

 \sim \sim \sim \sim \sim 0 \sim \sim 0 49 0 \sim \sim

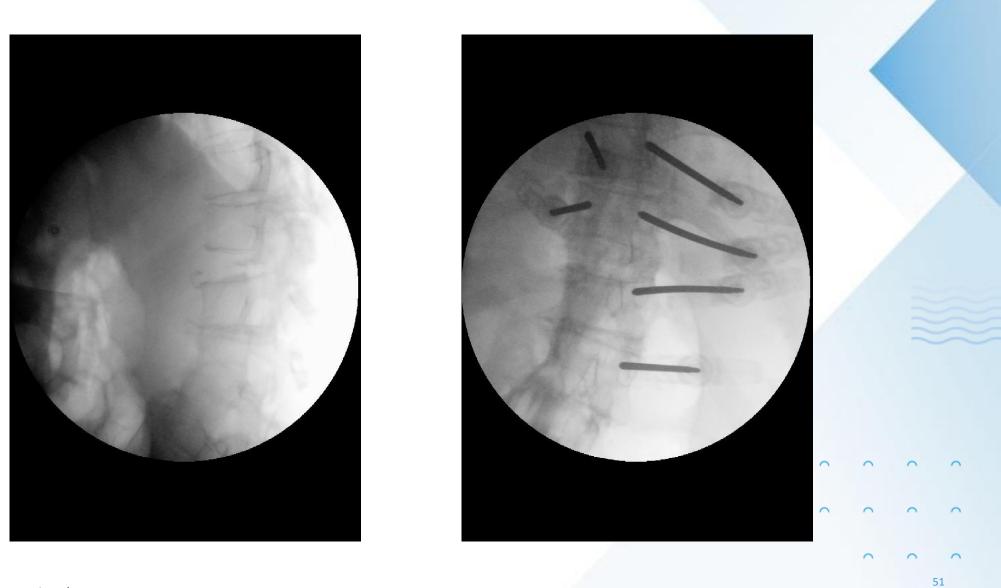
 \sim

 \sim

 \sim

Spine Expert Network for Science & Education

0


 \sim

50

There is a fracture, I need to fix it

SENSE

2nd International Spine Expert Symposium

SENSE

. . . .

SENSE

SENSE Spine Expert Network for Science & Education

 \sim

 \sim

 \sim

 \sim

0

 \sim

0

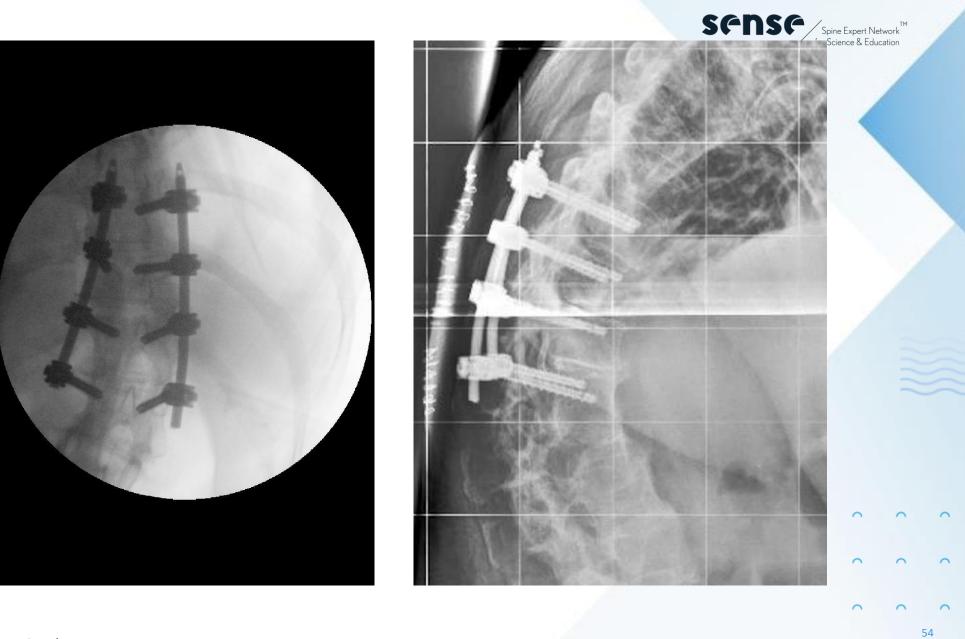
 \sim

 \sim

0

 \sim

0


0

0

 \sim

53

SENSE

2nd International Spine Expert Symposium

SENSE

 \sim

 \sim

0

 \sim

Thank you for your attention!

p.weidle@kh-neuwerk.de

SENSE

2nd International Spine Expert Symposium SENSE Spine Expert Network for Science & Education

0

0

 \sim

 \circ

0

 \sim

0

 \sim

 \sim

 \sim

0

0

0

 \sim