Fax +41 21 799 11 53
Route de Lausanne 157a
1096 Villette, Switzerland
1. Abdalla Y, Hajdari S., New approaches to proven technology: Force control posterior thoracolumbar fusion with an innovative pedicle screw system. Interdisciplinary Neurosurgery, 31 (2023) 101701.
2. McClelland S, Takemoto RC, Lonner BS, et al. Analysis of Postoperative Thoracolumbar Spine Infections in a Prospective Randomized Controlled Trial Using the Centers for Disease Control Surgical Site Infection Criteria. Int J Spine Surg. 2016 Apr 21;10:14.
3. Pull ter Gunne AF, Cohen DB. Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine 2009 Jun 1;34(13):1422-8.
4. Litrico S, Recanati G, Gennari A, et al. Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):21-6.
5. Agarwal A, Lin B, Agarwal AG, et al. A Multicenter Trial Demonstrating Presence or Absence of Bacterial Contamination at the Screw-Bone Interface Owing to Absence or Presence of Pedicle Screw Guard, Respectively, During Spinal Fusion. Clin Spine Surg. 2020 Mar 11. [Epub ahead of print]
6. Abdalla Y. Value Based Healthcare: Maximizing efficacy and managing risk with spinal implant technology. Interdiscip Neurosurg 22 (2020) 100810.
7. Leiden A, Cerdas F, Noriega D, Beyerlein J, Herrmann C. Life cycle assessment of a disposable and reusable surgery instrument set for spinal fusion surgeries. Resources, Conservation & Recycling 156 (2020) 104704.
1.Galbusera F, et al. Pedicle screw loosening : a clinically relevant complication. Eur Spine J (2015) 24:1005–1016.
2. Wu, Z. X., et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg 2012;132:471-476.
3. El Saman A, et al. Reduced screw loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013 Oct;39(5):455-60.
4. Rometsch E, Spruit M, Zigler JE, et al. Screw-Related Complications After Instrumentation of the Journal 2020, Vol. 10(1) 69-88.
5. Ohba T, Ebata S, Oba H, Koyama K, Haro H. The Risk Factors for Clinically Relevant Loosening of Percutaneous Pedicle Screws. Spine Surg Relat Res 2019; 3(1): 79-85.
6. Agarwal A, et al. A Paradigm Shift Toward Terminally Sterilized Devices. Clin Spine Surg. 2018 Aug; 31(7):308-311.
7. Thiede B, et al. Evaluation of reprocessing medical devices in 14 German regional hospitals and at 27 medical practitioners’ offices within the European context – consequences for European harmonization. GMS Hyg Infect Control. 2013 Nov 6;8(2):Doc20.
8. Agarwal A, et al. Harboring Contaminants in Repeatedly Reprocessed Pedicle Screws. Global Spine J 2019, Vol.9(2):173-178.
9. McAuley T (2016) “Reprocessing of Single-use Screws: A Study on the Effects of Repeated Reprocessing on Single-use Screws in Screw Caddies.” Australasian College for Infection Prevention and Control 2016 Conference.
10. Abdalla Y, Hajdari S., New approaches to proven technology: Force control posterior thoracolumbar fusion with an innovative pedicle screw system. Interdisciplinary Neurosurgery, 31 (2023) 101701.
11. Abdalla Y. Value Based Healthcare: Maximizing efficacy and managing risk with spinal implant technology. Interdiscip Neurosurg 22 (2020) 100810.
12. Unterstützung bei der weiteren Ausgestaltung eines medizinischökonomischen Modells zur vergleichenden Betrachtung von Prozesskosten einer Operationstechnik in der Wirbelsäulenchirurgie. Comparative Medico Economic Analysis by Ernst&Young 2017. Data on file.
13. Agarwal A, et al. Multicenter Trial Demonstrating Presence or Absence of Bacterial Contamination at the Screw-Bone Interface Owing to Absence or Presence of Pedicle Screw Guard, Respectively, During Spinal Fusion. Clin Spine Surg. 2020 Mar11;10.1097/BSD.0000000000000976.
14. Litrico S, et al. Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):21-6.
15. Leiden A, Cerdas F, Noriega D, Beyerlein J, Herrmann C. Life cycle assessment of a disposable and reusable surgery instrument set for spinal fusion surgeries. Resources, Conservation & Recycling 156 (2020) 104704.
1. Agarwal A, et al. A Paradigm Shift Toward Terminally Sterilized Devices. Clin Spine Surg. 2018 Aug; 31(7):308-311.
2. Thiede B, et al. Evaluation of reprocessing medical devices in 14 German regional hospitals and at 27 medical practitioners’ offices within the European context – consequences for European harmonization. GMS Hyg Infect Control. 2013 Nov 6;8(2):Doc20.
3. Agarwal A, et al. Harboring Contaminants in Repeatedly Reprocessed Pedicle Screws. Global Spine J 2019, Vol.9(2):173-178.
4. McAuley T (2016) “Reprocessing of Single-use Screws: A Study on the Effects of Repeated Reprocessing on Single-use Screws in Screw Caddies.” Australasian College for Infection Prevention and Control 2016 Conference.
5. Abdalla Y. Value Based Healthcare: Maximizing efficacy and managing risk with spinal implant technology. Interdiscip Neurosurg 22 (2020) 100810.
6. Wong J, Khu KJ, Kaderali Z, Bernstein M. Delays in the operating room: signs of an imperfect system. Can J Surg. 2010;53(3):189-195.
7. Huynh E, Klouche S, Martinet C, Le Mercier F, Bauer T, Lecoeur A. Can the number of surgery delays and postponements due to unavailable instrumentation be reduced? Evaluating the benefits of enhanced collaboration between the sterilization and orthopedic surgery units. Orthop Traumatol Surg Res. 2019;105(3):563-568.
8. Pokrywka M, Byers K. Traffic in the operating room: a review of factors influencing air flow and surgical wound contamination. Infect Disord Drug Targets. 2013;13(3):156-161. doi:10.2174/1871526511313030002.
9. Sadrizadeh S, Pantelic J, Sherman M, Clark J, Abouali O. Airborne particle dispersion to an operating room environment during sliding and hinged door opening. J Infect Public Health. 2018;11(5):631-635.
10. Perez P, Holloway J, Ehrenfeld L, et al. Door openings in the operating room are associated with increased environmental contamination. Am J Infect Control. 2018;46(8):954-956
11. Alizo G, et al. Operating Room Foot Traffic: A Risk Factor for Surgical Site Infections. Surgical Infections 2019 Vol. 20:2.
12. Cristina ML, et al. Operating room environment and surgical site infections in arthroplasty procedures. J PREV MED HYG 2016; 57: E142-E148.
13. Unterstützung bei der weiteren Ausgestaltung eines medizinischökonomischen Modells zur vergleichenden Betrachtung von Prozesskosten einer Operationstechnik in der Wirbelsäulenchirurgie. Comparative Medico Economic Analysis by Ernst&Young 2017.
14. Abdalla Y, Hajdari S., New approaches to proven technology: Force control posterior thoracolumbar fusion with an innovative pedicle screw system. Interdisciplinary Neurosurgery, 31 (2023) 101701.
15. Agarwal A, et al. Multicenter Trial Demonstrating Presence or Absence of Bacterial Contamination at the Screw-Bone Interface Owing to Absence or Presence of Pedicle Screw Guard, Respectively, During Spinal Fusion. Clin Spine Surg. 2020 Mar11;10.1097/BSD.0000000000000976.
16. Litrico S, et al. Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):21-6.
17. Leiden A, Cerdas F, Noriega D, Beyerlein J, Herrmann C. Life cycle assessment of a disposable and reusable surgery instrument set for spinal fusion surgeries. Resources, Conservation & Recycling 156 (2020) 104704.
1. Abdalla Y, Hajdari S., New approaches to proven technology: Force control posterior thoracolumbar fusion with an innovative pedicle screw system. Interdisciplinary Neurosurgery, 31 (2023) 101701.
2. McClelland S, et al. Analysis of Postoperative Thoracolumbar Spine Infections in a Prospective Randomized Controlled Trial Using the Centers for Disease Control Surgical Site Infection Criteria. Int J Spine Surg. 2016 Apr 21;10:14.
3. Litrico S, et al. Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):21-6.
4. Glaser J, et al. A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation. Spine (2003) 28:1390–1395.
5. Galbusera F, et al. Pedicle screw loosening : a clinically relevant complication. Eur Spine J (2015) 24:1005–1016.
6. El Saman A, et al. Reduced screw loosening rate an loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013 Oct;39(5):455-60.
7. Rometsch E, Spruit M, Zigler JE, et al. Screw-Related Complications After Instrumentation of the Journal 2020, Vol. 10(1) 69-88.
8. Abdalla Y. Value Based Healthcare: Maximizing efficacy and managing risk with spinal implant technology. Interdiscip Neurosurg Adv Technol Case Manag, accepted June 14, 2020.
9. Paik H, et al. The biomechanical consequences of rod reduction on pedicle screws: should it be avoided? Spine J 13 (2013) 1617–1626.
10. Kuo CC, et al. Bio-mechanical demands on posterior fusion instrumentation during lordosis restoration procedures. J Neurosurg Spine 2016 Sep;25(3):345-51.
11. Ohba T, et al. The Risk Factors for Clinically Relevant Loosening of Percutaneous Pedicle Screws. Spine Surg Relat Res 2019; 3(1): 79-85.
12. Tohmeh AG, et al. Long Construct Pedicle Screw Reduction and Residual Forces are Decreased Using a Computer-Assisted Spinal Rod Bending System. NuVasive®, Inc. May.
13. Kim HJ, et al. The biomechanical effect of pedicle screws insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion. Spine (2012) Sep 1;37(19):1637- 44.
14. Agarwal A, et al. A Paradigm Shift Toward Terminally Sterilized Devices. Clin Spine Surg. 2018 Aug; 31(7):308-311.
15. Argo JL, et al. Elective surgical case cancellation in the Veterans Health Administration system: identifying areas for improvement. Am J Surg. 2009 Nov;198(5):600-6.
16. Bouthors C, et al. Single-use versus reusable medical devices in spinal fusion surgery: a hospital micro-costing analysis. Eur J Orthop Surg Traumatol. 2019;29(8):1631-1637.
17. Goldberg TD, et al. Logistical and Economic Advantages of Sterile-Packed, Single-Use Instruments for Total Knee Arthroplasty. J Arthroplasty. 2019 Sep;34(9):1876-1883.
18. Galetta MS, et al. Processing and Handling Cost of Single-use Versus Traditional Instrumentation for 1 Level Lumbar Fusions [published online ahead of print, 2020 Jun 16]. Clin Spine Surg. 2020;10.1097/ BSD.0000000000001033.
19. Lipscomb IP, et al. Amyloid-specific fluorophores for the rapid, sensitive in situ detection of prion contamination on surgical instruments. J Gen Virol. 2007 88: 2619-2626.
20.Thiede B, et al. Evaluation of reprocessing medical devices in 14 German regional hospitals and at 27 medical practitioners’ offices within the European context – consequences for European harmonization. GMS Hyg Infect Control. 2013 Nov 6;8(2):Doc20.
21. Agarwal A, et al. Harboring Contaminants in Repeatedly Reprocessed Pedicle Screws. Global Spine J 2019, Vol.9(2):173-178.
22. McAuley T (2016) “Reprocessing of Single-use Screws: A Study on the Effects of Repeated Reprocessing on Single-use Screws in Screw Caddies.” Australasian College for Infection Prevention and Control 2016 Conference.
23. Agarwal A, et al. Multicenter Trial Demonstrating Presence or Absence of Bacterial Contamination at the Screw-Bone Interface Owing to Absence or Presence of Pedicle Screw Guard, Respectively, During Spinal Fusion [published online ahead of print, 2020 Mar 11]. Clin Spine Surg. 2020;10.1097/BSD.0000000000000976.
24. Leiden A, Cerdas F, Noriega D, Beyerlein J, Herrmann C. Life cycle assessment of a dis¬posable and reusable surgery instrument set for spinal fusion surgeries. Resources, Conservation & Recycling 156 (2020) 104704.
1. Abdalla Y, Hajdari S., New approaches to proven technology: Force control posterior thoracolumbar fusion with an innovative pedicle screw system. Interdisciplinary Neurosurgery, 31 (2023) 101701.
2. McClelland S, et al. Analysis of Postoperative Thoracolumbar Spine Infections in a Prospective Randomized Controlled Trial Using the Centers for Disease Control Surgical Site Infection Criteria. Int J Spine Surg. 2016 Apr 21;10:14.
3. Litrico S, et al. Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):21-6.
4. Glaser J, et al. A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation. Spine (2003) 28:1390–1395.
5. Galbusera F, et al. Pedicle screw loosening : a clinically relevant complication. Eur Spine J (2015) 24:1005–1016.
6. El Saman A, et al. Reduced screw loosening rate an loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013 Oct;39(5):455-60.
7. Rometsch E, Spruit M, Zigler JE, et al. Screw-Related Complications After Instrumentation of the Journal 2020, Vol. 10(1) 69-88.
8. Abdalla Y. Value Based Healthcare: Maximizing efficacy and managing risk with spinal implant technology. Interdiscip Neurosurg 22 (2020) 100810.
9. Paik H, et al. The biomechanical consequences of rod reduction on pedicle screws: should it be avoided? Spine J 13 (2013) 1617–1626.
10. Kuo CC, et al. Biomechanical demands on posterior fusion instrumentation during lordosis restoration procedures. J Neurosurg Spine 2016 Sep;25(3):345-51.
11. Ohba T, et al. The Risk Factors for Clinically Relevant Loosening of Percutaneous Pedicle Screws. Spine Surg Relat Res 2019; 3(1): 79-85.
12. Tohmeh AG, et al. Long Construct Pedicle Screw Reduction and Residual Forces are Decreased Using a Computer-Assisted Spinal Rod Bending System. NuVasive®, Inc. May.
13. Kim HJ, et al. The biomechanical effect of pedicle screws insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion. Spine (2012) Sep 1;37(19):1637-44.
14. Leiden A, Cerdas F, Noriega D, Beyerlein J, Herrmann C. Life cycle assessment of a disposable and reusable surgery instrument set for spinal fusion surgeries. Resources, Conservation & Recycling 156 (2020) 104704.
1. Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompabilityof laser processed porous titanium. Acta Biomater. 2007 Nov;3(6):1007-18.
2. Rao, P.J., et al., Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg, 2014. 6(2): p. 81-9.
3. Olivares-Navarrete, R., et al., Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J, 2012. 12(3): p. 265-72.
4. Gittens, R.A., et al., Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater, 2014. 10(8): p. 3363-71.
5. Ito, Z., et al., Volumetric change in interbody bone graft after posterior lumbar interbody fusion (PLIF): a prospective study. Eur Spine J, 2014, 23(10): p. 2144-9.